Search results for "Exotic hadrons"

showing 3 items of 3 documents

Double Polarization Observables in Pentaquark Photoproduction

2019

We investigate the properties of the hidden charm pentaquark-like resonances first observed by LHCb in 2015, by measuring the polarization transfer KLL between the incident photon and the outgoing proton in the exclusive photoproduction of J/psi near threshold. We present a first estimate of the sensitivity of this observable to the pentaquark photocouplings and hadronic branching ratios, and extend our predictions to the case of initial state helicity correlation ALL, using a polarized target. These results serve as a benchmark for the SBS experiment at Jefferson Lab, which proposes to measure for the first time the helicity correlations ALL and KLL in J/psi exclusive photoproduction, in o…

Particle physicsFísica-Modelos matemáticosPhotonHadronpentaquarksFOS: Physical sciences01 natural sciencesexotic hadronsHigh Energy Physics - ExperimentPolarized targetHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesPhoton polarizationNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentPhysicsexotic hadrons; pentaquarks; hadron spectroscopy010308 nuclear & particles physicshadron spectroscopyObservablePolarization (waves)HelicityPentaquarkHigh Energy Physics - PhenomenologyHigh Energy Physics::Experiment
researchProduct

Direct X(3872) production in e+e- collisions

2014

Direct production of the charmonium-like state $X(3872)$ in $e^+e^-$ collisions is considered in the framework of the vector meson dominance model. An order-of-magnitude estimate for the width $\Gamma(X\to e^+e^-)$ is found to be $\gtrsim$0.03 eV. The same approach applied to the $\chi_{c1}$ charmonium decay predicts the corresponding width of the order 0.1 eV in agreement with earlier estimates. Experimental perspectives for the direct production of the $1^{++}$ charmonia in $e^+e^-$ collisions are briefly discussed.

Nuclear Theory (nucl-th)High Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Nuclear TheoryExotic hadronsFOS: Physical sciencesHigh Energy Physics::Experimentddc:530Charmoniumlcsh:Physicslcsh:QC1-999High Energy Physics - Experiment
researchProduct

Determination of the $X(3872)$ meson quantum numbers

2013

The quantum numbers of the X(3872) meson are determined to be J(PC) = 1(++) based on angular correlations in B+ -> X(3872)K+ decays, where X(3872) -> pi(+) pi(-) j/psi and J/psi -> pi(+) mu(-). The data correspond to 1.0 fb(-1) of pp collisions collected by the LHCb detector. The only alternative assignment allowed by previous measurements J(PC) = 2(-+) is rejected with a confidence level equivalent to more than 8 Gaussian standard deviations using a likelihood-ratio test in the full angular phase space. This result favors exotic explanations of the X(3872) state.

Particle physicsCOLLISIONSMesonExotic mesonHigh Energy Physics::LatticeGaussian14.40.NdNuclear TheoryGeneral Physics and AstronomyFOS: Physical sciences01 natural sciencesSettore FIS/04 - Fisica Nucleare e SubnucleareHigh Energy Physics - ExperimentNuclear physicsPhysics and Astronomy (all)symbols.namesakeHigh Energy Physics - Experiment (hep-ex)14.40.RtHadronic decays of bottom meson0103 physical sciences13.25.GvPi[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]CollisionsNuclear Experiment010306 general physicsPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyParticle physicsState (functional analysis)Exotic hadrons Charmonium Hadron ColliderQuantum numberLHCbFIS/01 - FISICA SPERIMENTALEPhase space13.25.HwsymbolsBottom mesons (|B|>0)TetraquarkFísica nuclearHigh Energy Physics::ExperimentLHCFísica de partículesExperimentsFIS/04 - FISICA NUCLEARE E SUBNUCLEAREParticle Physics - ExperimentHadronic decays of J/ψ Υ and other quarkoniaX(3872)
researchProduct